Global Solutions to the Spherically Symmetric Compressible Navier-Stokes Equations with Density-Dependent Viscosity

نویسندگان

  • Ruxu Lian
  • Lan Huang
  • Jian Liu
چکیده

We consider the exterior problem and the initial boundary value problem for the spherically symmetric isentropic compressible Navier-Stokes equations with density-dependent viscosity coefficient in this paper. For regular initial density, we show that there exists a unique global strong solution to the exterior problem or the initial boundary value problem, respectively. In particular, the strong solution tends to the equilibrium state as t → ∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Behavior of Spherically Symmetric Navier-Stokes Equations with Density-Dependent Viscosity∗

In this paper, we study a free boundary problem for compressible spherically symmetric Navier-Stokes equations without a solid core. Under certain assumptions imposed on the initial data, we obtain the global existence and uniqueness of the weak solution, give some uniform bounds (with respect to time) of the solution and show that it converges to a stationary one as time tends to infinity. Mor...

متن کامل

Global Behavior of Spherically Symmetric Navier-Stokes Equations with Degenerate Viscosity Coefficients

In this paper, we study a free boundary problem for compressible spherically symmetric Navier-Stokes equations with a gravitational force and degenerate viscosity coefficients. Under certain assumptions that imposed on the initial data, we obtain the global existence and uniqueness of the weak solution and give some uniform bounds (with respect to time) of the solution. Moreover, we obtain some...

متن کامل

Global Solutions to the One-Dimensional Compressible Navier-Stokes-Poisson Equations with Large Data

This paper is concerned with the construction of global smooth solutions away from vacuum to the Cauchy problem of the one-dimensional compressible Navier-Stokes-Poisson system with large data and density dependent viscosity coefficient and density and temperature dependent heat conductivity coefficient. The proof is based on some detailed analysis on the bounds on the density and temperature f...

متن کامل

Compressible Flows with a Density-Dependent Viscosity Coefficient

We prove the global existence of weak solutions for the 2-D compressible Navier-Stokes equations with a density-dependent viscosity coefficient (λ = λ(ρ)). Initial data and solutions are small in energy-norm with nonnegative densities having arbitrarily large sup-norm. Then, we show that if there is a vacuum domain at the initial time, then the vacuum domain will retain for all time, and vanish...

متن کامل

Global solutions of compressible Navier–Stokes equations with a density–dependent viscosity coefficient

We prove the global existence and uniqueness of the classical (weak) solution for the 2D or 3D compressible Navier–Stokes equations with a density–dependent viscosity coefficient (λ = λ(ρ)). Initial data and solutions are only small in the energy-norm. We also give a description of the large time behavior of the solution. Then, we study the propagation of singularities in solutions. We obtain t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012